Tag: Fast

KAIST Raptor, An Incredibly Fast Bipedal Robot by Dinosaurs

Raptor is a bipedal robot which was designed and conceived in 2014 by the Korea Advanced Institute of Science and Technology (KAIST). It has a top speed of 28.58 miles per hour, making it the second fastest robot after the Cheeath, and the fastest bipedal robot worldwide. Designers at the KAIST took their inspiration from the Velociraptor, a bipedal dinosaur which balances itself with its tail. The robot moves itself with a pair of carbon / epoxy composite blade legs.

It has two under-actuated legs and a tail inspired by velociraptors. The Raptor robot runs at a speed of 46 km/h on a treadmill with off-board power. Tail-assisted pitch control provides stability over high obstacles.

Please follow and like us:
error
Read Full Article

MIT cheetah robot lands the running jump

Jennifer Chu | MIT News Office
May 29, 2015

In a leap for robot development, the MIT researchers who built a robotic cheetah have now trained it to see and jump over hurdles as it runs — making this the first four-legged robot to run and jump over obstacles autonomously.

To get a running jump, the robot plans out its path, much like a human runner: As it detects an approaching obstacle, it estimates that object’s height and distance. The robot gauges the best position from which to jump, and adjusts its stride to land just short of the obstacle, before exerting enough force to push up and over. Based on the obstacle’s height, the robot then applies a certain amount of force to land safely, before resuming its initial pace.

In experiments on a treadmill and an indoor track, the cheetah robot successfully cleared obstacles up to 18 inches tall — more than half of the robot’s own height — while maintaining an average running speed of 5 miles per hour.

“A running jump is a truly dynamic behavior,” says Sangbae Kim, an assistant professor of mechanical engineering at MIT. “You have to manage balance and energy, and be able to handle impact after landing. Our robot is specifically designed for those highly dynamic behaviors.”

Kim and his colleagues — including research scientist Hae won Park and postdoc Patrick Wensing — will demonstrate their cheetah’s running jump at the DARPA Robotics Challenge in June, and will present a paper detailing the autonomous system in July at the conference Robotics: Science and Systems.

Once the robot has detected an obstacle, the second component of the algorithm kicks in, allowing the robot to adjust its approach while nearing the obstacle. Based on the obstacle’s distance, the algorithm predicts the best position from which to jump in order to safely clear it, then backtracks from there to space out the robot’s remaining strides, speeding up or slowing down in order to reach the optimal jumping-off point.

Please follow and like us:
error
Read Full Article